Economic consequences of low cost additives in waste wood combustion systems

Alwin Hoogendoorn

Portfoliomanager Research @ Centre of Expertise Biobased Economy

Avans University of Applied Sciences, The Netherlands

Contents of presentation

- Life cycle costing (LCC) methodology
- LCC Wood gratefired boiler 40 MW_{th}, Austria
- LCC Wood gratefired boiler 70 MW_{th}, Swede
- LCC Wood gratefired boiler 7 $MW_{th'}$ Poland
- LCC Wood Fluid. Bed boiler 85 MW_{th}, Netherlands
- Summary of economic consequences
- EU-wide scale utilization potential
- Conclusions

REFAWOOD

CoE BBE

Life cycle cost analysis

Objective: determination of the economic effects of using resource efficient additives in waste wood fuel mixes

A financial comparison between the baseline scenario and a scenario in which additives are used

Life cycle costing: input data

Baseline scenario:

 Plant data of a regular and representative year of operation

operation	
Depreciation period	year
Total project cost	€
Nett Environmental Subsidy	€
Purchasing cost wet wood chips	€/ton
Revenue for heat delivered	€ct/kWh
Revenue from electricity feed	€ct/kWh
Exploitation and insurance costs	€/year
Max electricity production	kWe
Max heat production	kWth
Thermal supply of wood chips	kWth
Heating value of biomass	MJ/kg
Biomass use on a yearly basis	ton/year
Operational (full load) hours of boiler	hours
	MWh/yea
Nett heat production	r
	MWh/yea
Nett electricity production	r

REFAWOOD

Additives scenario:

- Baseline scenario
 - + Additional costs and investments
 - + Cost reductions

Costs of additive	€/year
Investment in gypsum dosing equipment	€
Additional cost for fluegas desulphurization	€/year
Additional (ash and gypsum) disposal costs	€/year
Cost reduction due to decreased downtime	€/year
Cost reduction due to increased lifetime heat exchanger/superheater	€/year

Increased boiler efficiency

LCC methodology (1)

Baseline scenario:

Depreciation period	years
Total project cost	€
Nett Environmental Subsidy	€
Purchasing cost wet wood chips	€/ton
Revenue for heat delivered	€ct/kWh
Revenue from electricity feed	€ct/kWh
Exploitation and insurance costs	€/year
Max electricity production	kWe
Max heat production	kWth
Thermal supply of wood chips	kWth
Heating value of biomass	MJ/kg
Biomass use on a yearly basis	ton/year
Operational (full load) hours of boiler	hours
	MWh/yea
Nett heat production	r
	MWh/yea
Nett electricity production	r

Exploitation costs breakdown:

Project result: Cost reduction (before interest and corporate tax) in € per year **REFAWOOD**

LCC methodology (2)

- Input data provided by REFAWOOD project partners and test reports
- Distinction made in high and low effect scenario
- Variation (High Low) in:
- Downtime reduction

RFFAWC

- Increased total plant efficiency
- Increased lifetime heat exchanger / superheater

Wood gratefired boiler Austria

 \geq

 \geq

 \geq

Baseline scenario:

Depreciation period	10 years
Total project cost	13.300.000€
Nett Environmental Subsidy	0€
Purchasing cost wet wood chips	75€/ton
Revenue for heat delivered	3,00 €ct/kWh
Revenue from electricity feed	10,50 €ct/kWh
Exploitation and insurance costs	2.000.000 €/year
Max electricity production	8.800 kWe
Max heat production	4.000 kWth
Thermal supply of wood chips	40.000 kWth
Heating value of biomass	11,54 MJ/kg
Biomass use on a yearly basis	103.533 ton/year
Operational (full load) hours of boiler	Hours
	8.297 MWh/yea
Nett heat production	33.180 r
	73.014 MWh/yea
Nett electricity production	r

combustion

superheater

ERA-NET

Project result: Cost reduction (before interest and corporate tax)

REFAWOOD

Demolition wood gratefired boiler, Sweden

Baseline scenario:

Depreciation period	25 years
Total project cost	103.000.000€
Nett Environmental Subsidy	0€
Purchasing cost wet wood chips	13€/ton
Revenue for heat delivered	1,90 €ct/kWh
Revenue from electricity feed	2,90 €ct/kWh
Exploitation and insurance costs	6.919.603 €/year
Max electricity production	22.000 kWe
Max heat production	45.000 kWth
Thermal supply of wood chips	71.000 kWth
Heating value of biomass	12,3 MJ/kg
Biomass use on a yearly basis	87.901ton/year
Operational (full load) hours of boiler	hours
	4.230 MWh/yea
Nett heat production	190.350r
	49.280 MWh/yea
Nett electricity production	r

Additives scenarios:

- Gypsum: 1 wt-% (421 ton/year ≈ 0,5%)
- Downtime reduction: 25-50 h/year
- Increased total plant efficiency: 0,25 -0,5%
- Increased lifetime superheater: 3-6 years

Costs of additive		8.420€	E/year	
Investment in gypsum dosing equipment		50.000€	E	
Additional cost for fluegas desulphurization		5.000€	E/year	
Additional (ash and gypsum) disposal costs		0€	E/year	
Cost reduction due to decreased downtime	150	.000-300.000 (€/year	
Cost reduction due to increased lifetime superhe		8 330-16 667 #	€/vear	

Project result: Cost reduction (before interest and corporate tax)

REFAWOOD

114.000- 293.000€/year

Fresh wood chips gratefired, Poland

Baseline scenario:

Depreciation period	8 years
Total project cost	7.530.000€
Nett Environmental Subsidy	3.765.000€
Purchasing cost wet wood chips	37€/ton
Revenue for heat delivered	6,50 €ct/kWh
Revenue from electricity feed	2,40 €ct/kWh
Exploitation and insurance costs	851.765 €/year
Max electricity production	1.200 kWe
Max heat production	5.500 kWth
Thermal supply of wood chips	8.000 kWth
Heating value of biomass	8,3 MJ/kg
Biomass use on a yearly basis	23.075 ton/year
Operational (full load) hours of boiler	hours
	6.800 MWh/yea
Nett heat production	37.400r
	7.980 MWh/yea
Nett electricity production	r

Additives scenarios:

- ➢ Gypsum: 1 wt-%
- Downtime reduction: 75-150 h/year
- Increased total plant efficiency: 0,5-1%
- > Increased lifetime heat exchanger: 0,75-1,5 years

Costs of additive	116€/year
Investment in gypsum dosing equipment	3.000€
Additional cost for fluegas desulphurization	0€/year
Additional (ash and gypsum) disposal costs	3.000€/year
Cost reduction due to decreased downtime	20.900-41.700 €/year
Cost reduction due to increased lifetime heat	
exchanger	6.200-12.400 €/year
Cost reduction due to decreased downtime Cost reduction due to increased lifetime heat exchanger	20.900-41.700 €/year 6.200-12.400 €/year

Project result: Cost reduction (before interest and corporate tax) 28.000- 60.000 €/year **REFAWOOD**

Wood fluidized bed boiler, Netherlands

Baseline scenario:

Depreciation period	12 years
Total project cost	55.000.000€
Nett Environmental Subsidy	0€
Purchasing cost wet wood chips	28€/ton
Revenue for heat delivered	5,00 €ct/kWh
Revenue from electricity feed	3,20 €ct/kWh
Exploitation and insurance costs	4.150.000 €/year
Max electricity production	21.000 kWe
Max heat production	40.000 kWth
Thermal supply of wood chips	83.000 kWth
Heating value of biomass	8,83 MJ/kg
Biomass use on a yearly basis	250.140 ton/year
Operational (full load) hours of boiler	hours
	7.400 MWh/yea
Nett heat production	296.000r
	155.400 MWh/yea
Nett electricity production	r

Additives scenarios:

- ➢ Gypsum: 1 wt-%
- Downtime reduction: 100-200 h/year
- Increased total plant efficiency: 0,5-1%
- Increased lifetime 3 superheaters: 4-8 years

Costs of additive	40.000€/year
Investment in gypsum dosing equipment	30.000€
Additional cost for fluegas desulphurization	-€/year
Additional (ash and gypsum) disposal costs	30.000€/year
Cost reduction due to decreased downtime	84.000-166.000 €/year
Cost reduction due to increased lifetime 3	
superheaters	30.000-60.000 €/year

Project result: Cost reduction (before interest and corporate tax) **REFAWOOD**

78 MW. 27.4 kg 100 bar 525 'C

KVÆRNER

Economic results for 4 power plants

Case study	Cost reduction	
Wood boiler Austria, gypsum scenario	19.000-128.000€/year	
Demolition gratefired Sweden, gypsum scenario	114.000-293.000€/year	
Fresh wood chips Poland, gypsum scenario	28.000-60.000€/year	
Various biomass Netherlands, gypsum scenario	106.000-268.000€/year	

Considerations when applying new additives

Possible considerations with regard to potential application of S-rich additives:

- High steam temperatures (> 400 °C) & low lifetime of superheaters (<15 yrs; existing corrosion!)
- Current slagging & fouling problems in the boiler
- High chlorine content in fuel (in g/GJ; e.g. waste wood or municipal waste)
- Combustion technology (e.g. grate or fluidized bed?)
- Existing flue gas desulphurization equipment with possibility to clean higher SO2 loadings (or bag filter which may be converted)

REFAWOOD

Quantative data on wood boilers and waste incinerators EU-28

Appr. 580 wood fired boilers >20 MW in EU28 (44.000 MW_{th})

COE BBE

Assumption: ->180 boilers using demolition wood >20 MW_{th}

>520 waste incineration plants (30.000 MW_{th})

Sources: wood chip plants AEBIOM Bioenergy outlook 2017 (BASIS project), CEWEP interactive map

REFAWOOD

Conclusions and recommendations

Gypsum cofiring scenarios at 4 different wood-fired power stations have been set up.

The addition of gypsum may result in

- lower superheater corrosion rates
- lower boiler downtime
- higher boiler efficiency

For a 70 MW_{th} demolition wood-fired boiler this may lead to 114.000 – 293.000 euro in yearly savings.

There is a huge potential for using this technology in other European demolition wood boilers and especially waste incinerations plants.

Thank you for your attention

Alwin Hoogendoorn

alwin.hoogendoorn@avans.nl

+31-653721864

