

bioenergy2020+

Ash reduction in waste wood combustion

Reducing downtime with additives in large-scale biomass combustion

Wels, 28th February

Content

- Introduction and objectives
- Methodology
- Results
 - Deposit formation
 - Gaseous emissions
 - Dust emissions
 - Reducing downtime
- Summary and conclusion

Introduction and objectives

- Slagging and fouling in biomass boilers leads to shutdowns → Removement of these deposits
 - Downtime of the boiler is associated with enormous costs.
- In order to minimise the slagging tendency, inexpensive additives are to be used.
 - Additives and favourable additive rates were first tested on laboratory scale.
 - Aim: Testing of suitable additives in a large-scale biomass combustion system.

Introduction and objectives

Plant investigated

40 MW_{th} grate furnace equipped with 3 dust injectors; production of superheated steam

Fuel: grate: forest wood chips, bark and waste wood dust burner: dust fractions from the manufacturing process

 Problems: slagging in the combustion chamber, slagging and fouling at the heat exchanger, corrosion

Introduction and objectives - Scheme of the biomass **CHP** plant

ERA-NET

Bioenergy

Introduction and objectives - Photos of problems in the biomass boiler

Protective evaporator from below (in the flow direction, luv) after a system operation of 9 weeks

Rear wall of the 2nd duct against the flow direction in the direction of the 1st duct photographed

Methodology

- Additive injection close to the right dust burner
- Measurements
 - Deposit formation
 - Deposit probe simulating a heat exchanger tube
 - Determination of built-up rate
 - SEM/EDX analysis for composition of deposits
 - Emissions
 - Gaseous emissions (SO₂, HCl, NO_x, CO); total dust
 - Chemical analysis: fuel, bottom ash and total dust

Methodology - Additive investigations

Additive application

- Reference without additive
- Coal fly ash
- Gypsum

Amounts of additive provided to the combustion system

Additive	Addition in wt.% related to dry fuel	Addition in kg/min	
Coal fly ash	3	3.92	
Gypsum	2	2.61	

Results - Deposit formation - Built-up rate

Deposition built-up

Highest deposition built-up rate for coal fly ash addition

Result - Deposit formation - SEM-EDX analysis

- Inhomogeneous element distribution for coal fly ash
- Higher S concentrations by gypsum → sulphation → lower CI concentration

Results - Gaseous emissions - Gypsum addition

Influence of fuel dust injection on precipitation of the additive

Results - Total dust emissions

Total dust in the flue gas

Results - Total dust emissions

- Total dust in the flue gas chemical composition
 - Higher AI und lower K and Zn concentration for coal fly ash addition compared to the reference case without additive.
 - Coal fly ash contains high amounts of Al and reduces the release of K and partly of Zn
 - Significantly higher S concentrations and lower CI concentrations for gypsum addition compared to the reference case without additive and for coal fly ash addition
 - Degradation of gypsum in the combustion chamber
 - Formation of $SO_2 \rightarrow$ preferable formation of sulphates

- Indices based upon the chemical composition of ash forming elements.
- The molar (Si+K+P)/(Ca+Mg) and (Si+K+P)/(Ca+Mg+AI) ratio can predict the potential regarding ash melting or slagging.
 - Si in combination with K decreases the ash melting temperatures
 - CaO and MgO increase the ash sintering temperature; K₂O and P₂O₅ decrease the sintering temperature
 - Based on ternary phase diagrams

[Sommersacher, P.; Brunner, T.; Obernberger, I. Energy Fuels 2012, 26, 380–390.]
[Sommersacher, P.; Brunner, T.; Obernberger, I. Proceedings of the Conference Impacts of Fuel Quality on Power Production and Environment, Sept 23–27, 2012, Puchberg, Austria]

- Modification of the molar (Si+K+P)/(Ca+Mg) and (Si+K+P)/(Ca+Mg+Al) ratio to estimate the reduced downtime of the combustion system.
 - Si content is not considered since the ashes are Ca dominated.
 - The molar (K+P)/(Ca+Mg) and (K+P)/(Ca+Mg+Al) ratios are used for a prediction concerning the slagging of deposits formed (SODF). → SODF is the reason for downtime of the boiler.

- Lower values for the molar (K+P)/(Ca+Mg) and (K+P)/(Ca+Mg+Al) ratio (minimisation of SODF) is linearly proportional to the reduction of downtime which are necessary because of SODF.
- Assumption: Only about 50% of the improvements of the index values have a real effect concerning reduction of downtime in the combustion system.

 Estimating the minimisation of SODF for chemical composition of total dust.

		reference	coal fly ash	gypsum
(K+P)/(Ca+Mg)	mol/mol	0.25	0.24	0.17
(K+P)/(Ca+Mg+Al)	mol/mol	0.20	0.15	0.13
[(K+P)/(Ca+Mg)]*0.5	%		3	17
[(K+P)/(Ca+Mg+Al)]*0.5	%		13	18

■ Concerning SODF an improvement of about 13% and 17% for coal fly ash and gypsum respectively can be assumed → Reduced downtime in % of the combustion system.

Summary and conclusions

- Position of additive injection and prevailing boundary conditions in the boiler (dust injection close to the additive injection) influences the precipitation of the additive in the boiler.
 - Additive application must be individually tailored out to each specific combustion system.
- Degradation of gypsum in the combustion chamber successful
 - Formation of $SO_2 \rightarrow preferable$ formation of sulfates
- Increased total dust emissions for coal fly ash addition.
 - Higher Al und lower K and Zn concentration for coal fly ash addition compared to the reference case without additive.
- A reduced downtime of the combustion system of about 13% and 17% for coal fly ash and gypsum respectively can be assumed.

Bioenergy

Thank you for your attention!

